List of sorting algorithms
In this table, n is the number of records to be sorted. The columns "Best", "Average", and "Worst" give the time complexity in each case, under the assumption that the length of each key is constant, and that therefore all comparisons, swaps, and other needed operations can proceed in constant time. "Memory" denotes the amount of auxiliary storage needed beyond that used by the list itself, under the same assumption. These are all comparison sorts.

	Name

	Best

	Average

	Worst

	Memory

	Stable

	Method

	Other notes

	Bubble sort
	O(n)
	—
	O(n2)
	O(1)
	Yes
	Exchanging
	Times are for best variant

	Cocktail sort
	O(n)
	—
	O(n2)
	O(1)
	Yes
	Exchanging
	

	Comb sort
	O(n log n)
	O(n log n)
	O(n log n)
	O(1)
	No
	Exchanging
	

	Gnome sort
	O(n)
	—
	O(n2)
	O(1)
	Yes
	Exchanging
	

	Selection sort
	O(n2)
	O(n2)
	O(n2)
	O(1)
	No
	Selection
	

	Insertion sort
	O(n)
	O(n + d)
	O(n2)
	O(1)
	Yes
	Insertion
	d is the number of inversions, which is O(n2)

	Shell sort
	—
	—
	O(n1.5)
	O(1)
	No
	Insertion
	

	Binary tree sort
	O(n log n)
	O(n log n)
	O(n2)
	O(n)
	Yes
	Insertion
	When using a self-balancing binary search tree

	Library sort
	O(n)
	O(n log n)
	O(n2)
	O(n)
	Yes
	Insertion
	

	Merge sort
	O(n log n)
	O(n log n)
	O(n log n)
	O(n)
	Yes
	Merging
	

	In-place merge sort
	O(n log n)
	O(n log n)
	O(n log n)
	O(1)
	Yes
	Merging
	Memory is for in-place partition algorithm

	Heapsort
	O(n log n)
	O(n log n)
	O(n log n)
	O(1)
	No
	Selection
	

	Smoothsort
	O(n)
	—
	O(n log n)
	O(1)
	No
	Selection
	

	Quicksort
	O(n log n)
	O(n log n)
	O(n2)
	O(log n)
	No
	Partitioning
	Naïve variants use O(n) space

	Introsort
	O(n log n)
	O(n log n)
	O(n log n)
	O(log n)
	No
	Hybrid
	used in most implementations of STL[citation needed]

	Patience sorting
	O(n)
	—
	O(n2)
	O(n)
	No
	Insertion
	Finds all the longest increasing subsequences within O(n log n)

Bubble sort

Bubble sort is a simple sorting algorithm. It works by repeatedly stepping through the list to be sorted, comparing two items at a time and swapping them if they are in the wrong order. The pass through the list is repeated until no swaps are needed, which means the list is sorted. The algorithm gets its name from the way smaller elements "bubble" to the top (i.e. the beginning) of the list via the swaps. Because it only uses comparisons to operate on elements, it is a comparison sort. This is the easiest comparison sort to implement.

a C-language program to do bubble sort.

void bubblesort(array x[], int size)

{

 for(int i = 0; i < size; i++)

 {

 for(int j = 0; j < size - i; j++)

 {

 /*

 Condition to handle i = 0 && j = size - 1.

 j + 1 tries to access x[size] which is out of bounds

 in zero-based array

 */

 if(j + 1 == size)

 {

 continue;

 }

 if (x[j] > x[j + 1])

 {

 /* Swap the two elements */

 temp = x[j];

 x[j] = x[j + 1];

 x[j + 1] = temp;

 }

 } /* end inner loop */

 } /* end outer loop */

}

Insertion sort

Insertion sort is a simple sorting algorithm, a comparison sort in which the sorted array (or list) is built one entry at a time. It is much less efficient on large lists than more advanced algorithms such as quicksort, heapsort, or merge sort, but it has various advantages:

· Simple to implement

· Efficient on (quite) small data sets

· Efficient on data sets which are already substantially sorted: it runs in O(n + d) time, where d is the number of inversions
· More efficient in practice than most other simple O(n2) algorithms such as selection sort or bubble sort: the average time is n2/4 and it is linear in the best case

· Stable (does not change the relative order of elements with equal keys)

· In-place (only requires a constant amount O(1) of extra memory space)

· It is an online algorithm, in that it can sort a list as it receives it.

In abstract terms, every iteration of an insertion sort removes an element from the input data, inserting it at the correct position in the already sorted list, until no elements are left in the input. The choice of which element to remove from the input is arbitrary and can be made using almost any choice algorithm.

Sorting is typically done in-place. The resulting array after k iterations contains the first k entries of the input array and is sorted. In each step, the first remaining entry of the input is removed, inserted into the result at the right position, thus extending the result:

becomes:

with each element > x copied to the right as it is compared against x.

The most common variant, which operates on arrays, can be described as:

1. Suppose we have a method called insert designed to insert a value into a sorted sequence at the beginning of an array. It operates by starting at the end of the sequence and shifting each element one place to the right until a suitable position is found for the new element. It has the side effect of overwriting the value stored immediately after the sorted sequence in the array.

2. To perform insertion sort, start at the left end of the array and invoke insert to insert each element encountered into its correct position. The ordered sequence into which we insert it is stored at the beginning of the array in the set of indexes already examined. Each insertion overwrites a single value, but this is okay because it's the value we're inserting.

A simple pseudocode version of the complete algorithm follows, where the arrays are zero-based:

 insert(array a, int length, value) {

 int i = length - 1;

 while (i >= 0 && a[i] > value) {

 a[i + 1] = a[i];

 i--;

 }

 a[i + 1] = value;

 }

 insertionSort(array a, int length) {

 for (int i = 1; i < length; i++) insert(a, i, a[i]);

 }

Good and bad input cases
In the best case of an already sorted array, this implementation of insertion sort takes O(n) time: in each iteration, the first remaining element of the input is only compared with the last element of the sorted subsection of the array. This same case provides worst-case behavior for non-randomized and poorly implemented quicksort, which will take O(n2) time to sort an already-sorted list. Thus, if an array is sorted or nearly sorted, insertion sort will significantly outperform quicksort.

The worst case is an array sorted in reverse order, as every execution of the inner loop will have to scan and shift the entire sorted section of the array before inserting the next element. Insertion sort takes O(n2) time in this worst case as well as in the average case, which makes it impractical for sorting large numbers of elements. However, insertion sort's inner loop is very fast, which often makes it one of the fastest algorithms for sorting small numbers of elements, typically less than 10 or so.

Comparisons to other sorts
Insertion sort is very similar to selection sort. Just like in selection sort, after k passes through the array, the first k elements are in sorted order. For selection sort, these are the k smallest elements, while in insertion sort they are whatever the first k elements were in the unsorted array. Insertion sort's advantage is that it only scans as many elements as it needs to in order to place the k + 1st element, while selection sort must scan all remaining elements to find the absolute smallest element.

Simple calculation shows that insertion sort will therefore usually perform about half as many comparisons as selection sort. Assuming the k + 1st element's rank is random, it will on the average require shifting half of the previous k elements over, while selection sort always requires scanning all unplaced elements. If the array is not in a random order, however, insertion sort can perform just as many comparisons as selection sort (for a reverse-sorted list). It will also perform far fewer comparisons, as few as n - 1, if the data is pre-sorted, thus insertion sort is much more efficient if the array is already sorted or "close to sorted." It can be seen as an advantage for some real-time applications that selection sort will perform identically regardless of the order of the array, while insertion sort's running time can vary considerably.

While insertion sort typically makes fewer comparisons than selection sort, it requires more writes because the inner loop can require shifting large sections of the sorted portion of the array. In general, insertion sort will write to the array O(n2) times while selection sort will write only O(n) times. For this reason, selection sort may be better in cases where writes to memory are significantly more expensive than reads, such as EEPROM or Flash memory.

Some divide-and-conquer algorithms such as quicksort and mergesort sort by recursively dividing the list into smaller sublists which are then sorted. A useful optimization in practice for these algorithms is to switch to insertion sort for "sorted enough" sublists on which insertion sort outperforms the more complex algorithms. The size of list for which insertion sort has the advantage varies by environment and implementation, but is typically around 8 to 20 elements.

Variants
D.L. Shell made substantial improvements to the algorithm, and the modified version is called Shell sort. It compares elements separated by a distance that decreases on each pass. Shell sort has distinctly improved running times in practical work, with two simple variants requiring O(n3/2) and O(n4/3) time.

If comparisons are very costly compared to swaps, as is the case for example with string keys stored by reference or with human interaction (such as choosing one of a pair displayed side-by-side), then using binary insertion sort can be a good strategy. Binary insertion sort employs binary search to find the right place to insert new elements, and therefore performs [image: image10.png][logs(:

n!)]

comparisons in the worst case, which is Θ(n log n). The algorithm as a whole still takes Θ(n2) time on average due to the series of swaps required for each insertion, and since it always uses binary search, the best case is no longer Ω(n) but Ω(n log n).

To avoid having to make a series of swaps for each insertion, we could instead store the input in a linked list, which allows us to insert and delete elements in constant time. Unfortunately, binary search on a linked list is impossible, so we still spend O(n2) time searching. If we instead replace it by a more sophisticated data structure such as a heap or binary tree, we can significantly decrease both search and insert time. This is the essence of heap sort and binary tree sort.

In 2004, Bender, Farach-Colton, and Mosteiro published a new variant of insertion sort called library sort or gapped insertion sort that leaves a small number of unused spaces ("gaps") spread throughout the array. The benefit is that insertions need only shift elements over until a gap is reached. Surprising in its simplicity, they show that this sorting algorithm runs with high probability in O(n log n) time.

Shell sort

Shell sort is a sorting algorithm that is a generalization of insertion sort, with two observations:

· insertion sort is efficient if the input is "almost sorted", and

· insertion sort is typically inefficient because it moves values just one position at a time.

The original implementation performs Θ(n2) comparisons and exchanges in the worst case. A minor change given in V. Pratt's book improved the bound to O(n log2 n). This is worse than the optimal comparison sorts, which are O(n log n).

Shell sort improves insertion sort by comparing elements separated by a gap of several positions. This lets an element take "bigger steps" toward its expected position. Multiple passes over the data are taken with smaller and smaller gap sizes. The last step of Shell sort is a plain insertion sort, but by then, the array of data is guaranteed to be almost sorted.

Consider a small value that is initially stored in the wrong end of the array. Using an O(n2) sort such as bubble sort or insertion sort, it will take roughly n comparisons and exchanges to move this value all the way to the other end of the array. Shell sort first moves values using giant step sizes, so a small value will move a long way towards its final position, with just a few comparisons and exchanges.

One can visualize Shellsort in the following way: arrange the list into a table and sort the columns (using an insertion sort). Repeat this process, each time with smaller number of longer columns. At the end, the table has only one column. While transforming the list into a table makes it easier to visualize, the algorithm itself does its sorting in-place (by incrementing the index by the step size, i.e. using i += step_size instead of i++).

For example, consider a list of numbers like [13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10]. If we started with a step-size of 5, we could visualize this as breaking the list of numbers into a table with 5 columns. This would look like this:

13 14 94 33 82

25 59 94 65 23

45 27 73 25 39

10

We then sort each column, which gives us

10 14 73 25 23

13 27 94 33 39

25 59 94 65 82

45

When read back as a single list of numbers, we get [10 14 73 25 23 13 27 94 33 39 25 59 94 65 82 45]. Here, the 10 which was all the way at the end, has moved all the way to the beginning. This list is then again sorted using a 3-gap sort, and then 1-gap sort (simple insertion sort).

The Shell sort is named after its inventor, Donald Shell, who published it in 1959. Some older textbooks and references call this the "Shell-Metzner" sort after Marlene Metzner Norton, but according to Metzner, "I had nothing to do with the sort, and my name should never have been attached to it." [1]
[image: image18.png]frany
2[1]9]5[5]
Ve TN

Gap sequence
The shellsort algorithm in action

The gap sequence is an integral part of the shellsort algorithm. Any increment sequence will work, so long as the last element is 1. The algorithm begins by performing a gap insertion sort, with the gap being the first number in the gap sequence. It continues to perform a gap insertion sort for each number in the sequence, until it finishes with a gap of 1. When the gap is 1, the gap insertion sort is simply an ordinary insertion sort, guaranteeing that the final list is sorted.

The gap sequence that was originally suggested by Donald Shell was to begin with N / 2 and to halve the number until it reaches 1. While this sequence provides significant performance enhancements over the quadratic algorithms such as insertion sort, it can be changed slightly to further decrease the average and worst-case running times. Weiss' textbook demonstrates that this sequence allows a worst case O(n2) sort, if the data is initially in the array as (small_1, large_1, small_2, large_2, ...) - that is, the upper half of the numbers are placed, in sorted order, in the even index locations and the lower end of the numbers are placed similarly in the odd indexed locations.

Perhaps the most crucial property of Shellsort is that the elements remain k-sorted even as the gap diminishes. For instance, if a list was 5-sorted and then 3-sorted, the list is now not only 3-sorted, but both 5- and 3-sorted. If this were not true, the algorithm would undo work that it had done in previous iterations, and would not achieve such a low running time.

Depending on the choice of gap sequence, Shellsort has a proven worst-case running time of O(n2) (using Shell's increments that start with 1/2 the array size and divide by 2 each time), O(n3 / 2) (using Hibbard's increments of 2k − 1), O(n4 / 3) (using Sedgewick's increments of 9(4i) − 9(2i) + 1, or 4i + 1 + 3(2i) + 1), or O(nlog2n), and possibly unproven better running times. The existence of an O(nlogn) worst-case implementation of Shellsort remains an open research question.

Shell sort algorithm in C/C++
Shell sort is commonly used in programming languages; this is an implementation of the algorithm in C/C++ for sorting an array of integers. The increment sequence used in this example code gives an O(n2) worst-case running time.

void shell_sort(int A[], int size)

{

 int i, j, increment, temp;

 increment = (int) floor(size / 2.0);

 /* #include<math.h> for floor function */

 while (increment > 0)

 {

 for (i=increment; i < size; i++)

 {

 j = i;

 temp = A[i];

 while ((j >= increment) && (A[j-increment] > temp))

 {

 A[j] = A[j - increment];

 j = j - increment;

 }

 A[j] = temp;

 }

 if (increment == 2)

 increment = 1;

 else

 increment = (int) (increment / 2.2);

 }

}

Quicksort

Quicksort is a well-known sorting algorithm developed by C. A. R. Hoare that, on average, makes [image: image11.png]B(n log n)

(big O notation) comparisons to sort n items. However, in the worst case, it makes Θ(n2) comparisons. Typically, quicksort is significantly faster in practice than other [image: image12.png]B(n log n)

algorithms, because its inner loop can be efficiently implemented on most architectures, and in most real-world data it is possible to make design choices which minimize the possibility of requiring quadratic time.

The algorithm
Quicksort sorts by employing a divide and conquer strategy to divide a list into two sub-lists.

The steps are:

1. Pick an element, called a pivot, from the list.

2. Reorder the list so that all elements which are less than the pivot come before the pivot and so that all elements greater than the pivot come after it (equal values can go either way). After this partitioning, the pivot is in its final position. This is called the partition operation.

3. Recursively sort the sub-list of lesser elements and the sub-list of greater elements.

The base case of the recursion are lists of size zero or one, which are always sorted. The algorithm always terminates because it puts at least one element in its final place on each iteration (the loop invariant).

In simple pseudocode, the algorithm might be expressed as:

 function quicksort(q)

 var list less, pivotList, greater

 if length(q) ≤ 1

 return q

 select a pivot value pivot from q

 for each x in q

 if x < pivot then add x to less

 if x = pivot then add x to pivotList

 if x > pivot then add x to greater

 return concatenate(quicksort(less), pivotList, quicksort(greater))

Notice that we only examine elements by comparing them to other elements. This makes quicksort a comparison sort.

[image: image19.png]orgina

@20

16 82 26 60 35 19 75 54 40 43 % 69

Atersson.

P

16 60 26 40 4319 75 54 66 95 % 62

Bovaps.

Ater 3501

@2

16 43 26 40 54 35 75 68 66 95 9 62

Sowaps

Ater 1s0r

16 1

2009235 40 43 5 65 68 75 82 93 95

15 swaps

Version with in-place partition
In-place partition in action on a small list. The boxed element is the pivot element, blue elements are less or equal, and red elements are larger.

The disadvantage of the simple version above is that it requires Ω extra storage space, which is as bad as mergesort (see big-O notation for the meaning of Ω). The additional memory allocations required can also drastically impact speed and cache performance in practical implementations. There is a more complicated version which uses an in-place partition algorithm and can achieve [image: image13.png]

space use on average for good pivot choices:

 function partition(array, left, right, pivotIndex)

 pivotValue := array[pivotIndex]

 swap(array, pivotIndex, right) // Move pivot to end
 storeIndex := left

 for i from left to right-1

 if array[i] <= pivotValue

 swap(array, storeIndex, i)

 storeIndex := storeIndex + 1

 swap(array, right, storeIndex) // Move pivot to its final place
 return storeIndex

This form of the partition algorithm is not the original form; multiple variations can be found in various textbooks, such as versions not having the storeIndex. However, this form is probably the easiest to understand.

This is the in-place partition algorithm. It partitions the portion of the array between indexes left and right, inclusively, by moving all elements less than or equal to a[pivotIndex] to the beginning of the subarray, leaving all the greater elements following them. In the process it also finds the final position for the pivot element, which it returns. It temporarily moves the pivot element to the end of the subarray, so that it doesn't get in the way. Because it only uses exchanges, the final list has the same elements as the original list. Notice that an element may be exchanged multiple times before reaching its final place.

Once we have this, writing quicksort itself is easy:

 function quicksort(array, left, right)

 if right > left

 select a pivot index (e.g. pivotIndex = left)

 pivotNewIndex := partition(array, left, right, pivotIndex)

 quicksort(array, left, pivotNewIndex-1)

 quicksort(array, pivotNewIndex+1, right)

Parallelization
Like mergesort, quicksort can also be easily parallelized due to its divide-and-conquer nature. Individual in-place partition operations are difficult to parallelize, but once divided, different sections of the list can be sorted in parallel. If we have p processors, we can divide a list of n elements into p sublists in Θ(n) average time, then sort each of these in [image: image14.png]O(

"

n
log —~
gp)

average time. Ignoring the [image: image15.png]

preprocessing, this is linear speedup. Given Θ(n) processors, only [image: image16.png]

time is required overall.

One advantage of parallel quicksort over other parallel sort algorithms is that no synchronization is required. A new thread is started as soon as a sublist is available for it to work on and it does not communicate with other threads. When all threads complete, the sort is done.

Other more sophisticated parallel sorting algorithms can achieve even better time bounds. For example, in 1991 David Powers described a parallelized quicksort that can operate in [image: image17.png]

time given enough processors by performing partitioning implicitly.1
